中央家畜市場通信

令和6年11月号

盛岡農業改良普及センター作成

牧草地への堆肥散布で、化学肥料を節約しましょう

牧草地へ堆肥を散布すると、堆肥に含まれる窒素、リン酸、カリで化学肥料を削減することが できます。積雪前まで堆肥散布できますので、この機会にぜひ散布を検討してみましょう。

1 堆肥散布の時期は?→秋・春

①秋:牧草の最終刈り取り後~積雪前

理由)積雪時に堆肥散布しても、ほとんど流亡して牧草に利用されない

②春:牧草地にトラクタが入れるようになってから、4月中旬頃まで

理由) 堆肥混入による | 番草の品質低下を防ぐため、なるべく早い時期に散布する

2 堆肥の散布量は?→下記の事例では2トン/10a以内

多すぎる散布はカリ過剰となり、牧草のミネラルバランスを悪化させ、家畜のグラステタニー 発症につながる恐れがあります。以下を参考にしながら散布量を決定しましょう。

<牧草地の春施肥における堆肥散布量の算出手順>

① 堆肥の成分を把握しましょう(分析が必要) ここでは、牛ふん堆肥の分析値の一例を使って散布量を算出してみます。

表 | 牛ふん堆肥分析値の例(現物%)

水分①	窒素②	リン酸	カリ
69	0.6	0.4	0.6

※乾物中窒素濃度

- = 堆肥窒素②÷(100-堆肥水分①)% この例では表 | より
- $=0.62 \div (100-69)\%$
- $=0.6 \div 31\%$
- = 1.9 ←表2の2%未満に該当

② 堆肥の肥効率を確認します。

表2 牛ふん堆肥成分の肥効率

De la participa de la companya della companya de la companya della				
乾物中窒素濃度	肥効率(%)			
(%)	窒素	リン酸	カリ	
2%未満	10	80	90	
2%以上4%未満	30	80	90	
4%以上	40	80	90	

③ 堆肥の有効肥料成分を算出

堆肥散布量×成分(表1)×肥効率(表2) (kg/10a) (現物%) (%)

表 I と表 2 から計算してみると… 堆肥 I トンからの成分供給量(kg/ I Oa)

窒素	リン酸	カリ
0.6	3.2	5.4

④ 堆肥散布量と肥料成分の過不足(=化学肥料必要量)を計算してみましょう

		窒素	リン酸	カリ
早春施肥必要量① (成分kg/IOa)		10	5	10
堆肥散布量② (トン/IOa)	l トン	0.6	3.2	5.4
	2ኑን	1.2	6.4	10.8
過不足 (②-①)	l トン	-9.4	-1.8	-4.6
	2١٧	-8.8	+1.4	+0.8

今回の事例では、2トン/10α散布すると、カリがほぼ必要量に合致し、それ以上の散布はカリ過剰となる可能性があります。

堆肥散布量は2トン/10a以内

堆肥2トン散布する場合、 リン酸とカリは施肥不要

3 堆肥散布で早春の肥料代をどのくらい節約できるか?

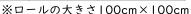
先ほどの事例から、牛ふん堆肥 2 トン/ I Oa散布した場合と、化学肥料のみで必要な成分量を満たした場合とで、金額の違いを算出してみます。 (10ga たり)

	早春の必要な肥料成分量		使用する化学肥料			
	窒素	リン酸	カリ	種類	量	金額※
①牛ふん堆肥 2 トン/10a散布	8.8	0	0	硫安(N21%)	40kg	3,724円
②化学肥料のみ	10	5	10	草地212号	50kg	8,775円

堆肥あり

4 実際に牧草地へ堆肥散布した事例の紹介

事例① 堆肥2トン/IOa+硫安で収量維持


- ・面積50aのオーチャードグラス主体草地
- ・早春施肥内容(IOaあたり)

R5: 堆肥2トン+草地212号40kg散布

R6: 堆肥2トン+硫安40kg散布

・1番草の結果

	収穫日	草丈	ロール個数
R5	5/25	95cm	21個
R6	5/22	IOIcm	22個

安価な肥料で、同等の収量を確保

事例② 毎年堆肥3~4トン/10a散布、3年目に硝酸態窒素が上昇

- ・R3~R5の毎年秋に堆肥散布
- ・リードカナリーグラス主体草地
- ・牧草中の硝酸態窒素濃度が上昇した 要因として考えられること
 - ①夏場に堆肥中有機物の分解が進み、 土壌中の窒素分が増加
 - ②2番草と3番草の収穫間隔が狭い

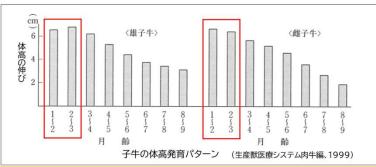
	R5 I番草	R6 I番草	R6 2番草	R6 3番草
収穫日	5/24	5/21	7/12	8/16
硝酸態窒素 (乾物中ppm)	200未満	773	1,026	3,108

硝酸態窒素濃度1,000ppmを超えると、 硝酸塩中毒が発生する可能性があります。 心配な方は飼料分析 をしましょう

マニュアルの ダウンロードは

《子牛を大きく育でよう!≫~岩手県肉用牛飼養管理マニュアルから~

○ 哺育牛の特性


小さく生まれ、初期に大きく増体

黒毛和種子牛はホルスタイン種と比較 して、生時体重は10kg程小さいですが、 生後1か月間の増体率は約2倍です。

こちら→ 間 発育順序は、脳・神経→骨格→筋肉→脂肪

骨格のうち、四肢の先端が初期に発育するため、生 後3か月齢までが最も体高が伸びる時期になります。

哺育期にしっかり栄養を吸収した子牛は、グンと成長します!母乳は足りていますか?子牛が寝ている場所は快適な空間ですか?自身の哺育管理を確認してみましょう。

[※] 複数農協のR7春用肥料予約価格をもとに算出